Bitte aktivieren Sie JavaScript in Ihrem Browser um unseren Internetauftritt optimal nutzen zu können.

Nephrol Dial Transplant., 2001; 16(11): 2236-9, PMID: 11682674

Bone mineral density in children with primary hyperoxaluria type I

Jahr: 2001

Behnke B, Kemper MJ, Kruse HP, Müller-Wiefel DE
Department of Paediatric Nephrology, University Hospital Eppendorf, Hamburg, Germany.

Abstract

BACKGROUND: In primary hyperoxaluria type I (PH 1), hepatic overproduction of oxalate leads to its deposition in various organ systems including bone (oxalosis). To evaluate skeletal status non-invasively in PH 1 we measured bone mineral density (BMD). METHODS: Peripheral quantitative computed tomography of the distal radius was performed in 10 children with PH 1 (mean chronological age 9+/-3.1, mean skeletal age 8.3+/-3.0 years): seven were on conservative treatment (CT) including one patient after pre-emptive liver transplantation (PH1-CT) and three were studied with end-stage renal disease on peritoneal dialysis (PH1-ESRD). RESULTS: Mean trabecular bone density (TBD) was significantly increased in PH1-ESRD compared with both age-matched healthy and uraemic controls (65227 vs. 168+/-63 and 256+/-80 mg/cm(3); P<0.002 and P<0.007, respectively), while cortical bone density (CBD) was elevated to a lesser degree (517+/-23 vs. 348+/-81 vs. 385+/-113 mg/cm(3); P<0.02 and P<0.04, respectively). In PH 1, CBD and, even more so, TBD were significantly correlated with serum creatinine (r=0.91 and r=0.96, P<0.0001, respectively) and plasma oxalate levels (r=0.86 and r=0.94, P<0.001 and P<0.0001, respectively). In children with PH 1 and normal glomerular function, both CBD and TBD were comparable with healthy controls. CONCLUSION: These preliminary data suggest that in PH 1 BMD is significantly increased in ESRD, probably due to oxalate disposal. Measurement of BMD may be a valuable and non-invasive tool in determining and monitoring oxalate burden in this disorder.

GID: 1145; Letzte Änderung: 28.02.2008