Bitte aktivieren Sie JavaScript in Ihrem Browser um unseren Internetauftritt optimal nutzen zu können.

Bone., 2008; 42(6): 1025-31, PMID: 18396127

TIEG-null mice display an osteopenic gender-specific phenotype

Hawse JR, Iwaniec UT, Bensamoun SF, Monroe DG, Peters KD, Ilharreborde B, Rajamannan NM, Oursler MJ, Turner RT, Spelsberg TC, Subramaniam M
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.

Abstract

TGFbeta inducible early gene-1 (TIEG) was originally cloned from human osteoblasts (OB) and has been shown to play an important role in TGFbeta/Smad signaling, regulation of gene expression and OB growth and differentiation. To better understand the biological role of TIEG in the skeleton, we have generated congenic TIEG-null (TIEG(-/-)) mice in a pure C57BL/6 background. Through the use of DXA and pQCT analysis, we have demonstrated that the femurs and tibias of two-month-old female TIEG(-/-) mice display significant decreases in total bone mineral content, density, and area relative to wild-type (WT) littermates. However, no differences were observed for any of these bone parameters in male mice. Further characterization of the bone phenotype of female TIEG(-/-) mice involved mechanical 3-point bending tests, micro-CT, and histomorphometric analyses of bone. The 3-point bending tests revealed that the femurs of female TIEG(-/-) mice have reduced strength with increased flexibility compared to WT littermates. Micro-CT analysis of femurs of two-month-old female TIEG(-/-) mice revealed significant decreases in cortical bone parameters compared to WT littermates. Histomorphometric evaluation of the distal femur revealed that female TIEG(-/-) mice also display a 31% decrease in cancellous bone area, which is primarily due to a decrease in trabecular number. At the cellular level, female TIEG(-/-) mice exhibit a 42% reduction in bone formation rate which is almost entirely due to a reduction in double labeled perimeter. Differences in mineral apposition rate were not detected between WT and TIEG(-/-) mice. Taken together, these findings suggest that female TIEG(-/-) mice are osteopenic mainly due to a decrease in the total number of functional/mature OBs.

Produktgruppen: pQCT Knochendichte & -geometrie
Themen: Diagnostik mit Leonardo & pQCT, Grundlagenforschung
Doc-ID: 1384, 22.07.2008