Bitte aktivieren Sie JavaScript in Ihrem Browser um unseren Internetauftritt optimal nutzen zu können.

J Musculoskelet Neuronal Interact., 2000; 1(1): 19-23, PMID: 15758520

How cancellous and cortical bones adapt to loading and growth hormone

Jahr: 2000

Kalu DN, Banu J, Wang L
Department of Physiology, The University of Texas Health Science Center, San Antonio, USA.


There is great interest in the relationships between growth hormone (GH), muscle loading and bone, in part, because GH increases muscle mass which provides the largest signals that control bone modeling and remodeling. This study was designed to examine the effects of GH and muscle loading by exercise (EX) independently and in combination on bone and skeletal muscle. Thirteen-month-old female F344 rats were divided into 6 groups: Group 1, baseline controls (B); Group 2, agematched controls (C); Group 3, GH treated (2.5 mg rhGH/kg b. wt/day, 5 days per week); Group 4, voluntary wheel running exercise (EX); Group 5, GH+EX, and rats in Group 6 were food restricted (FR) to lower their body weight and examine the effects of decreased muscle load on bone. All animals, except the baseline controls, were sacrificed after 4.5 months. Growth hormone increased the body weight and tibial muscle mass of the rats markedly, while EX caused a slight decrease in body weight and partially inhibited the increase caused by GH in the GH+EX group. Food restriction greatly decreased body weight below that of age-matched controls but neither FR nor EX had a significant effect on the mass of the muscles around the tibia. Growth hormone and EX independently increased tibial diaphyseal cortical bone area (p<0.0001), cortical thickness (p<0.0001), cortical bone mineral content (p<0.0001), periosteal perimeter (p<0.0001) and bone strength-strain index (SSI) (p<0.0001). The effects of GH were more marked, and the combination of GH and EX produced additive effects on many of the tibial diaphyseal parameters including bone SSI. GH+EX, but not GH or EX alone caused a significant increase in endocortical perimeter (p<0.0001). In the FR rats, cortical bone area and cortical mineral content increased above the baseline level (p<0.0001) but were below the levels for age-matched controls (p<0.0001). In addition, marrow area, endocortical perimeter and endocortical bone formation rate increased significantly in the FR rats (p<0.01, p<0.0001, p<0.0001). Three-point bending test of right tibial diaphysis resulted in maximum force (Fmax) values that reflected the group differences in indices of tibial diaphyseal bone mass except that GH+EX did not produce additive effect on Fmax. The latter showed good correlation with left tibial diaphyseal SSI (r=0.857, p<0.0001) and both indices of bone strength correlated well with tibial muscle mass (r=0.771, Fmax; r=0.700, SSI; p<0.0001). We conclude that the bone anabolic effects of GH with or without EX may relate, in part, to increased load on bone from tibial muscles and body weight, which were increased by the hormone. The osteogenic effects of EX with or without GH may relate, in part, to increased frequency of muscle load on bone as EX decreased body weight (p<0.05) but had no significant effect on tibial muscle mass. The enhanced loss of endocortical bone by FR may relate, in part, to decreased load on bone due to low body weight (p<0.0001) as FR did not cause a significant decrease in tibial muscle mass (p=0.357). The roles of humoral and local factors in the bone changes observed remain to be established.

GID: 492; Letzte Änderung: 10.12.2007
Weitere Informationen: Original Article