To use our website in an optimal way, please activate JavaScript in your Browser.

J Bone Miner Res, 2018; 33(1): 42–53, PMID: 28884881

Effects of a randomized weight loss intervention trial in obese adolescents on tibia and radius bone geometry and volumetric density.

Year: 2018

Kelley JC, Stettler-Davis N, Leonard MB, Hill D, Wrotniak BH, Shults J, Stallings VA, Berkowitz R, Xanthopoulos MS, Prout-Parks E, Klieger SB, Zemel BS
Division of Endocrinology and Diabetes, Monroe Carell, Jr Children"s Hospital at Vanderbilt, Nashville, TN.


Obese adolescents have increased fracture risk, but effects of alterations in adiposity on bone accrual and strength in obese adolescents are not understood. We evaluated 12-month changes in trabecular and cortical volumetric bone mineral density (vBMD) and cortical geometry in obese adolescents undergoing a randomized weight management program, and investigated the effect of body composition changes on bone outcomes. Peripheral quantitative CT of the radius and tibia, and whole body DXA scans were obtained at baseline, six and 12 months in 91 obese adolescents randomized to standard care versus behavioral intervention for weight loss. Longitudinal models assessed effects of body composition changes on bone outcomes, adjusted for age, bone length, and African-American ancestry, and stratified by sex. Secondary analyses included adjustment for physical activity, maturation, vitamin D, and inflammatory biomarkers. Baseline BMI was similar between intervention groups. Twelve-month change in BMI in the standard care group was 1.0 kg/m2 vs. -0.4 kg/m2 in the behavioral intervention group (p < 0.01). Intervention groups were similar in bone outcomes, so were combined for subsequent analyses. For the tibia, BMI change was not associated with change in vBMD or structure. Greater baseline lean body mass index (LBMI) associated with higher cortical vBMD in males, trabecular vBMD in females, and polar section modulus (pZ) and periosteal circumference (Peri-C) in both sexes. In females, change in LBMI positively associated with gains in pZ and Peri-C. Baseline visceral adipose tissue (VFAT) was inversely associated with pZ in males and cortical vBMD in females. Change in VFAT did not affect bone outcomes. For the radius, BMI and LBMI changes positively associated with pZ in males. Thus, in obese adolescents, weight loss intervention with modest changes in BMI was not detrimental to radius or tibia bone strength, and changes in lean, but not adiposity, measures were beneficial to bone development. This article is protected by copyright. All rights reserved.

GID: 4518; Last update: 18.09.2017