To use our website in an optimal way, please activate JavaScript in your Browser.

Animals (Basel), 2022; 12(5): , PMID: 35268222

The Influence of Nesfatin-1 on Bone Metabolism Markers Concentration, Densitometric, Tomographic and Mechanical Parameters of Skeletal System of Rats in the Conditions of Established Osteopenia.

Year: 2022

Tymicki G, Puzio I, Pawlowska-Olszewska M, Bienko M, Radzki RP
Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland.


Our study aimed to evaluate the impact of nesfatin-1 administration on bone metabolism and properties in established osteopenia in ovariectomized female rats. In total, 21 female Wistar rats were assigned to two groups: sham-operated (SHAM, n = 7) and ovariectomized (OVA, n = 14). After 12 weeks of osteopenia induction in the OVA females, the animals were given i.p. physiological saline (OVA, n = 7) or 2 microg/kg body weight of nesfatin-1(NES, n = 7) for the next 8 weeks. The SHAM animals received physiological saline at the same time. Final body weight, total bone mineral density and content of the skeleton were estimated. Then, isolated femora and tibias were subjected to densitometric, tomographic, and mechanical tests. Bone metabolism markers, i.e., osteocalcin, bone specific alkaline phosphatase (bALP), and crosslinked N-terminal telopeptide of type I collagen (NTx) were determined in serum using an ELISA kit. Ovariectomy led to negative changes in bone metabolism associated with increased resorption, thus diminishing the densitometric, tomographic, and mechanical parameters. In turn, the administration of nesfatin-1 led to an increase in the value of the majority of the tested parameters of bones. The lowest bALP concentration and the highest NTx concentration were found in the OVA females. The bALP concentration was significantly higher after nesfatin-1 administration in comparison to the OVA rats. In conclusion, the results indicate that nesfatin-1 treatment limits bone loss, preserves bone architecture, and increases bone strength in condition of established osteopenia.

GID: 5662; Last update: 15.03.2022